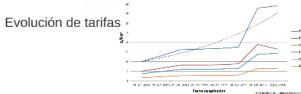
JORNADA SOBRE EFICIENCIA HÍDRICA Y ENERGÉTICAEN PROYECTOS DE I+D+i H2020

OPTIRES IIDII Gestión Eficiente de Regadíos, Energías Renovables

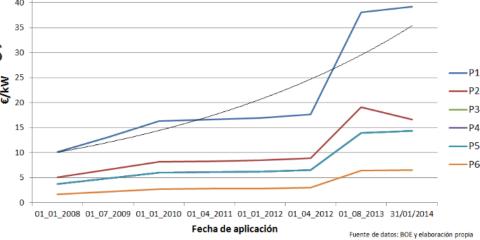


Presentación

Evolución del regadío: de gravedad a presión

Gran aumento del coste energético en el regadío:

- Consumir menos energía: Mejora de eficiencia energética.
- Consumir energía más barata:
 Producirla mediante EERR en lugar de consumirla de la red, optimizar la compra de electricidad de la red.



Presentación

Evolución del regadío: de gravedad a presión

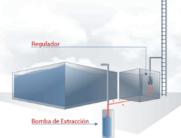
Evolución de tarifas

Gran aumento del coste energético en el regadío:

- Consumir menos energía: Mejora de eficiencia energética.
- Consumir energía más barata:
 Producirla mediante EERR en lugar de consumirla de la red, optimizar la compra de electricidad de la red.

EE.RR. en el Regadío

FOTOVOLTAICA


- Recurso conocido con evolución a lo largo de la campaña similar las necesidades de riego
- A gran potencia tener en cuenta la superficie necesaria para los paneles: unos 20m^2/kWp ó 500 kWp/ha
- Debido a su idoneidad ya se está usando en regadío, nuestro reto es integrarla en la red de una comunidad de regantes.

EÓLICA

- Curva de **generación inversa** a la de consumo (menos en verano y más en invierno).
- Recurso difícil de caracterizar: muy variable en tiempo y espacio.
- · Poca superficie, costes no lineales
- · Ideal para grandes potencias

MINIHIDRÁULICA

Dos opciones:

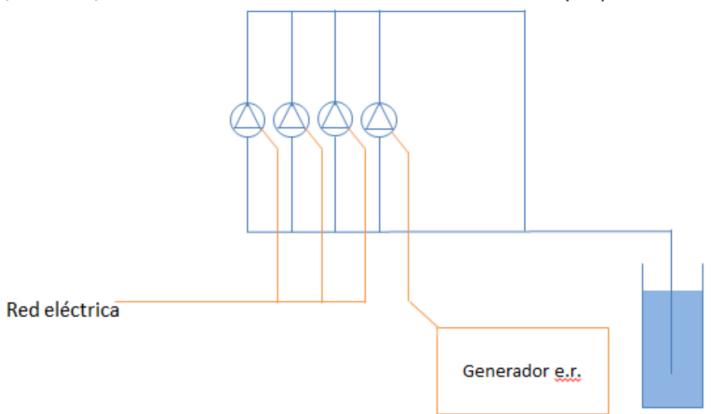
- Aprovechamiento de sobrepresión en la red.
- Uso de instalaciones existentes: rediseño o rehabilitación.

Riego por gravedad

Generación de electricidad en red aislada

ALTERNATIVAS DE CONEXIÓN

Autoconsumo


Regulado según normativa eléctrica (variable)

Inyección directa a red

No es ee.rr. en regadío, posible buena opción económica

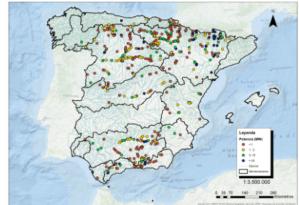
Aislado

Riesgo grande, o gran inversión si desconectas todas las bombas: se propone desconectar parte

EÓLICA

- Curva de generación inversa a la de consumo (menos en verano y más en invierno).
- Recurso difícil de caracterizar: muy variable en tiempo y espacio.
- Poca superficie, costes no lineales
- Ideal para grandes potencias

MINIHIDRÁULICA


Dos opciones:

- Aprovechamiento de sobrepresión en la red.
- Uso de instalaciones existentes: rediseño o rehabilitación.

Riego por gravedad

Generación de electricidad en red aislada

FOTOVOLTAICA

Recurso conocido con evolución a lo largo de la campaña

similar las necesidades de riego

 A gran potencia tener en cuenta la superficie necesaria para los paneles: unos 20m^2/kWp ó 500 kWp/ha

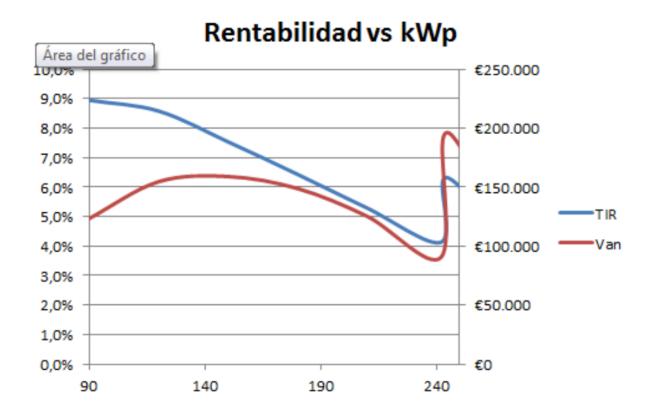
 Debido a su idoneidad ya se está usando en regadío, nuestro reto es integrarla en la red de una comunidad de regantes.

CCRR 1

- 3 bombas de 200 kW, usando 1
- Sin variador de frecuencia
- Balsa de regulación cercana a la estación de bombeo

CCRR 2

- 1 bomba de 90kW con variador
- 3 bombas de 200kW con variador
- Sin balsa de regulación
- Sin suelo disponible: Tejado


Opción	Inversión	Financiado	TIR	Ahorro anual	Pay-Back	VAN	Potencia bomba	Ubicación Paneles
Caudal	75.580 €	43.937 €	4,22%	4.954 €	15 Años	21.133 €	31 KW	Paneles en suelo
variable	75.132 €	43.489 €	3,73%	4.672 €	16 Años	16.090 €	28 kW	Paneles en
Escalón 6 l/s	74.750 €	43.106 €	1,45%	3.585 €	21 Años	-4.749 €	25 kW	tejado de la
Escalón 12 l/s	74.750 €	43.106 €	-3,56%	1.804 €	30 Años	-39.537 €	25 KW	nave de la CRR

CONCLUSIONES

- Cuanto más concentrado el riego menos rentable será.
- Instalaciones más grandes son menos rentables.
- Importante aprovechar para bajar la potencia contratada si es posible.
- Bombeo continuo durante muchas horas (caras). Caudal variable.
- Ideal si hay balsa de regulación.
 Aprovechamiento de la instalación al 100%.
- En España hay radiación de sobra, aún en el norte.

CCRR 1

- 3 bombas de 200 kW, usando 1
- Sin variador de frecuencia
- Balsa de regulación cercana a la estación de bombeo

CCRR 2

- 1 bomba de 90kW con variador
- 3 bombas de 200kW con variador
- Sin balsa de regulación
- Sin suelo disponible: Tejado

Opción	Inversión	Financiado	TIR	Ahorro anual	Pay-Back	VAN	Potencia bomba	Ubicación Paneles
Caudal	75.580 €	43.937 €	4,22%	4.954 €	15 Años	21.133 €	31 kW	Paneles en suelo
variable	75.132 €	43.489€	3,73%	4.672 €	16 Años	16.090 €	28 kW	Paneles en
Escalón 6 l/s	74.750€	43.106 €	1,45%	3.585 €	21 Años	-4.749€	25 kW	tejado de la
Escalón 12 l/s	74.750€	43.106 €	-3,56%	1.804 €	30 Años	-39.537 €	25 kW	nave de la CRR

CONCLUSIONES

- Cuanto más concentrado el riego menos rentable será.
- Instalaciones más grandes son menos rentables.
- Importante aprovechar para bajar la potencia contratada si es posible.
- Bombeo continuo durante muchas horas (caras). Caudal variable.
- Ideal si hay balsa de regulación.
 Aprovechamiento de la instalación al 100%.
- En España hay radiación de sobra, aún en el norte.

FOTOVOLTAICA

Recurso conocido con evolución a lo largo de la campaña

similar las necesidades de riego

 A gran potencia tener en cuenta la superficie necesaria para los paneles: unos 20m^2/kWp ó 500 kWp/ha

 Debido a su idoneidad ya se está usando en regadío, nuestro reto es integrarla en la red de una comunidad de regantes.

CCRR 1

- 3 bombas de 200 kW, usando 1
- Sin variador de frecuencia
- Balsa de regulación cercana a la estación de bombeo

CCRR 2

- 1 bomba de 90kW con variador
- 3 bombas de 200kW con variador
- Sin balsa de regulación
- Sin suelo disponible: Tejado

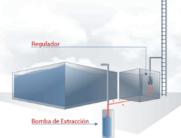
Opción	Inversión	Financiado	TIR	Ahorro anual	Pay-Back	VAN	Potencia bomba	Ubicación Paneles
Caudal	75.580 €	43.937 €	4,22%	4.954 €	15 Años	21.133 €	31 KW	Paneles en suelo
variable	75.132 €	43.489 €	3,73%	4.672 €	16 Años	16.090 €	28 kW	Paneles en
Escalón 6 l/s	74.750 €	43.106 €	1,45%	3.585 €	21 Años	-4.749 €	25 kW	tejado de la
Escalón 12 l/s	74.750 €	43.106 €	-3,56%	1.804 €	30 Años	-39.537 €	25 KW	nave de la CRR

CONCLUSIONES

- Cuanto más concentrado el riego menos rentable será.
- Instalaciones más grandes son menos rentables.
- Importante aprovechar para bajar la potencia contratada si es posible.
- Bombeo continuo durante muchas horas (caras). Caudal variable.
- Ideal si hay balsa de regulación.
 Aprovechamiento de la instalación al 100%.
- En España hay radiación de sobra, aún en el norte.

EE.RR. en el Regadío

FOTOVOLTAICA


- Recurso conocido con evolución a lo largo de la campaña similar las necesidades de riego
- A gran potencia tener en cuenta la superficie necesaria para los paneles: unos 20m^2/kWp ó 500 kWp/ha
- Debido a su idoneidad ya se está usando en regadío, nuestro reto es integrarla en la red de una comunidad de regantes.

EÓLICA

- Curva de **generación inversa** a la de consumo (menos en verano y más en invierno).
- Recurso difícil de caracterizar: muy variable en tiempo y espacio.
- · Poca superficie, costes no lineales
- · Ideal para grandes potencias

MINIHIDRÁULICA

Dos opciones:

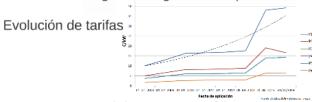
- Aprovechamiento de sobrepresión en la red.
- Uso de instalaciones existentes: rediseño o rehabilitación.

Riego por gravedad

Generación de electricidad en red aislada

JORNADA SOBRE EFICIENCIA HÍDRICA Y ENERGÉTICAEN PROYECTOS DE I+D+i H2020

OPTIREC HDHI Gestión Eficiente de Regadíos, Energías Renovables



MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE

Presentación

Evolución del regadío: de gravedad a presión

Gran aumento del coste energético en el regadío:

- Consumir menos energía: Mejora de eficiencia energética.
- Consumir energía más barata:
 Producirla mediante EERR en lugar de consumirla de la red, optimizar la compra de electricidad de la red.

EE.RR. en el Regadío

JORNADA SOBRE EFICIENCIA HÍDRICA Y ENERGÉTICAEN PROYECTOS DE I+D+i H2020

OPTIRES LEDEI: Gestión Eficiente de Regadíos, Energías Renovables

MUCHAS GRACIAS POR SU ATENCIÓN

Alberto Ortega aortega3@tragsa.es Grupo Tragsa