

BALSAS DE RIEGO

Informes en materia de seguridad

JORNADA "SEGURIDAD EN BALSAS DE RIEGO"

25 de octubre de 2017

Pablo Lucio Pérez Senderos

Jefe de Área de Supervisión de Proyecto Subdirección General de Regadíos y Economía del Agua

Dirección General de Desarrollo Rural y Política Forestal

ÍNDICE

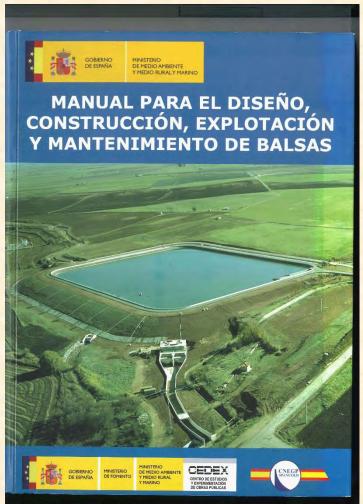
- I. Legislación
- II. Guías técnicas
- III. Emplazamiento-geotecnia-materiales
- IV. Estabilidad de la infraestructura
- V. Aliviaderos
- VI. Desagües de fondo
- VII. Red de drenaje
- VIII. Auscultación

I Legislación

Reglamento del Dominio Público Hidráulico (enero de 2008).

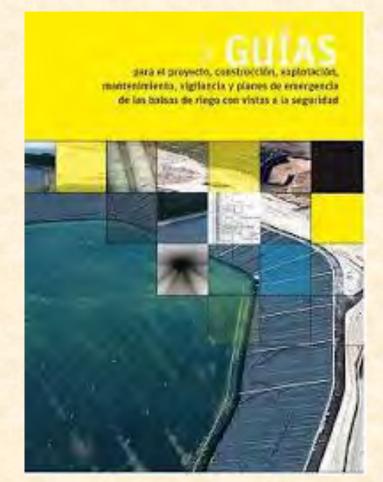
El artículo 362.2 señala que en materia de seguridad de presas y embalses, corresponde a las administraciones públicas competentes:

- b) Informar los proyectos, así como las circunstancias concretas que se presenten en el momento de proceder a un cambio de fase o etapa en la vida de la presa, o de producirse el otorgamiento o la renovación de la concesión.
- c) Inspeccionar la construcción de nuevas presas, informando sobre el cumplimiento de los requisitos de seguridad exigidos en el proyecto.


I Legislación

- Instrucción para proyecto, construcción y explotación de grandes presas (1967)
- Pliego de Prescripciones Técnicas Generales para Obras de Carreteras (1976)
- Directriz Básica de Planificación de protección Civil frente al Riesgo de Inundaciones (1995)
- Reglamento Técnico sobre Seguridad de Presas y Embalses (1996).
- Reglamento del Dominio Público Hidráulico (enero de 2008).

Il Guías Técnicas 1

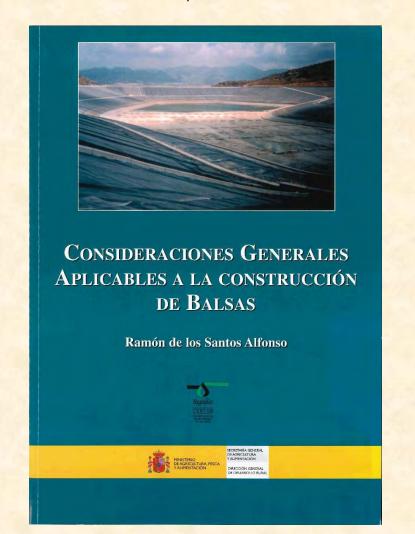

Manual para el diseño, construcción, explotación y mantenimiento de balsas 2010

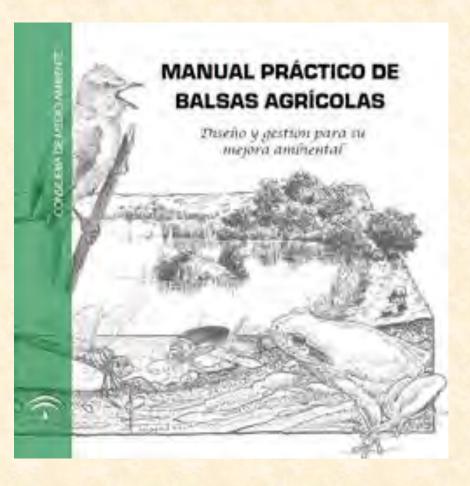
MARM, FOMENTO, CEDEX, CNEGP

Guía para el proyecto, construcción, explotación, mantenimiento, vigilancia y planes de emergencia de balsas de riego con vistas a la seguridad 2009

Consejería de Medio Ambiente, Agua y Urbanismo de la Generalitat Valenciana

II Guías Técnicas 2


Consideraciones generales aplicables a la construcción de balsas 2004
Ramón de los Santos Alfonso
MAPA, CENTER


Manual práctico de balsas agrícolas.

Diseño y gestión para su mejora ambiental 2011

CONSEJERÍA DE MEDIO AMBIENTE

JUNTA DE ANDALUCIA

III Emplazamiento-geotecnia-materiales

Prácticas habituales:

- Se adopta el lugar de emplazamiento por razones que tienen poco que ver con la técnica
- Los materiales empleados en el dique son los procedentes de la excavación
- Los materiales empleados a veces no son ni tolerables
- Escaso conocimiento geotécnico del emplazamiento
- Lejanía de un cauce al que evacuar los posibles desagües

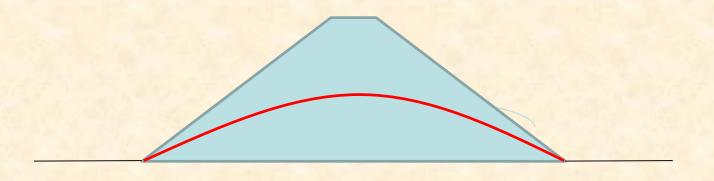
III Emplazamiento-geotecnia-materiales

Materiales recomendables en el dique

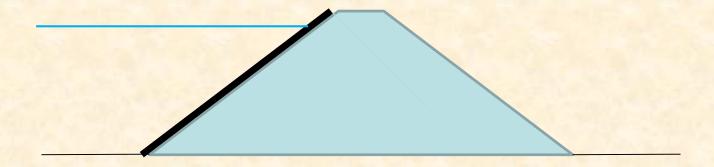
- Granulometría gradualmente heterogénea
- Baja plasticidad, LL<90%, IP<0,73x(LL-20)
- Materiales no expansivos (Hinchamiento<5%)
- Bajos contenidos de materia orgánica (MO<5%)
- Bajo contenido de yeso y sales solubles
- Evitar materiales dispersivos, arcillas con alto contenido en Na (Ensayo de Crumb<2)
- Evitar materiales antrópicos

IV Estudio de estabilidad

HIPÓTESIS:


- Final de construcción
- Embalse lleno
- Rotura del elemento de impermeabilización
- Desembalse rápido
- Situación de sismo con embalse lleno

Situación de diseño	Factor de seguridad
Final de construcción	1,3
Embalse lleno	1,5
Rotura elemento de impermeabilización	1,3
Sismo a embalse lleno	1,3
Desembalse rápido	1,1


IV Estudio de estabilidad: hipótesis I

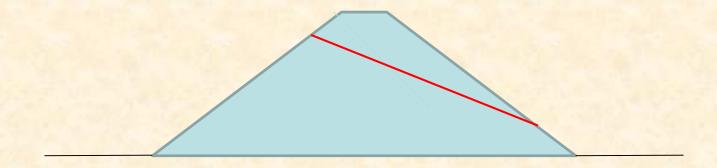
Final de construcción

Embalse lleno con lámina de impermeabilización

IV Estudio de estabilidad: hipótesis II


Embalse lleno sin elemento de impermeabilización

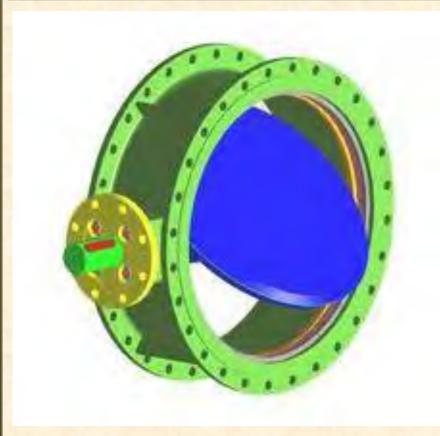
Embalse lleno con dren chimenea sin elemento impermeabilizante


IV Estudio de estabilidad: hipótesis III

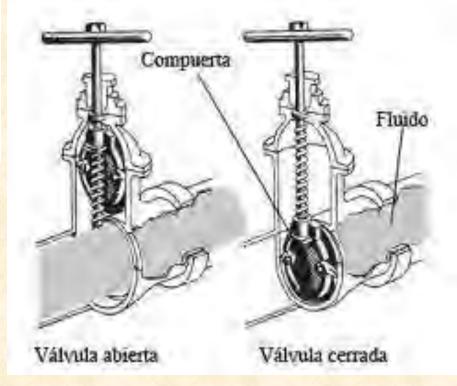
Rotura de elemento de impermeabilización

Desembalse rápido

- Los aliviaderos son necesarios
- Capacidad: Q_{entrada} + Q_{precipitación T=500 años}
- Evitar un posible atascamiento del aliviadero
- Buscar un cauce receptor para los desagües
- Evitar erosiones en los terraplenes del dique
- Evitar erosiones en los cauces receptores



VI.- Desagües de fondo y tomas


- · Los desagües de fondo son necesarios
- Capacidad: Vaciado de la balsa 24-48 horas
- Aconsejable dos conductos
- Interesante interconexión tomas-desagües
- Tuberías en galería o embebidas en prisma de hormigón en masa
- Cada conducto con dos elementos de cierre
- Buscar un cauce receptor para los desagües
- Evitar erosiones en los cauces receptores

Desagües de fondo: válvulas



¿Válvulas de mariposa o válvulas de compuerta?

VII.- Red de drenaje

Red de drenaje: funciones

- 1. Evitar problemas de capacidad de carga soporte
- 2. Evitar problemas de erosión interna
- 3. Evitar la inestabilidad de los taludes cuando se realiza un vaciado de balsa.
- 4. Evitar el levantamiento de la geomembrana cuando se realice un vaciado.
- 5. Permite un control de las fugas a través de la geomembrana y su localización.
- 6. Evacuación de gases generados en el terreno que pueden levantar la geomembrana.

VIII.- Auscultación: variables

- Control de filtraciones: en la red de drenaje y posibles filtraciones puntuales
- Presión intersticial: piezómetros.
- Asientos: nivelación topográfica
- Control de caudales: entrada (alimentación, lluvia, etc.) y salida (evaporación, toma, desagüe, etc.)
- Nivel del agua (limnimetro, escaleta, etc.)
- Temperatura (perdidas por evaporación)
- Células hidráulicas de presión