

JORNADA SOBRE DRONES

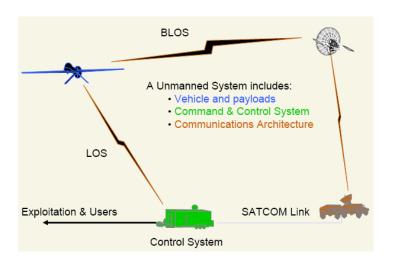
Subdirección General Regadíos y Economía del Agua Centro Nacional de Tecnología de Regadíos San Fernando de Henares, Madrid 6 de octubre de 2016

ESTADO ACTUAL DE LAS AERONAVES PILOTADAS POR CONTROL REMOTO

Prof. Cristina Cuerno Rejado

Catedrática de Universidad

Dpto. Aeronaves y Vehículos Espaciales. E.T.S.I. Aeronáutica y del Espacio (UPM)


Vocal del Pleno de la Comisión de Investigación de Accidentes e Incidentes de

Aviación Civil (CIAIAC)

ÍNDICE

- 1. Concepto y componentes de los RPAS.
- 2. Taxonomías.
- 3. Configuraciones.
- 4. Algunas cifras del mercado.

El RPAS podría definirse genéricamente como un sistema constituido básicamente por un segmento aéreo y un segmento terreno. El **segmento aéreo** lo forma la plataforma aérea, la carga útil (letal o no letal) adecuada a la misión asignada y parte del sistema de comunicaciones. El **segmento de tierra** incluye el sistema de control de la aeronave y su carga de pago, equipos de comunicaciones, así como la estación que permite diseminar la información obtenida de los sensores a los diferentes usuarios, bien directamente o a través de diferentes redes. Finalmente, la plataforma debe poder ser lanzada y recuperada con seguridad e integridad para volver a ser utilizada.

La **plataforma aérea** es de tamaño muy variable (desde los micro, como el Black Widow de 15 cm de diámetro, hasta los Global Hawk de 40m de envergadura), de diferentes sistemas de sustentación (ala fija, rotatorias, batientes, etc.) o de diferentes sistemas de propulsión (motores gasolina, motores diésel, turbohélices, turborreactores, motores eléctricos etc.). La plataforma incorpora además los sistemas de propulsión, posicionamiento, navegación, comunicaciones y los enlaces de datos, necesarios tanto para el control de vuelo, como para el control de la misión, y la descarga de la información capturada por los sensores.

La **carga útil** está constituida por los medios y equipos embarcados requeridos para la misión, como son los sistemas de sensores EO/IR, designadores láser, equipos de guerra electrónica, sistemas radar, SAR, armamento lanzable, etc.

Radares SAR y "Gimbal" electro-óptico.

Elemento	Descripción
Vehículo Aéreo	La plataforma debe reunir unas características que le permitan explotar las capacidades de los sensores, armamento o carga de pago.
Carga de pago (o útil)	 Sensores, armamento para las misiones asignadas y todo tipo de cargas útiles. Dado que actualmente la mayoría de las misiones son de observación/detección, la mayor parte de los sensores se inscriben en alguna de estas categorías: EO (visible y telémetro láser); IR; cámaras hiperespectrales. Radar (Synthetic Aperture Radar, Moving Target Indicator, Maritime Patrol Radar). LiDAR.
Comunicaciones	Enlace de datos para control (LOS y BLOS) e intercambio de datos de imagen.
Estación del control	Desde donde es operado o controlado por las tripulaciones remotas.
Equipos de apoyo	Lanzamiento y recuperación, kit de despliegue, etc.
Interfaz C2	Con los centros de operaciones, si procede.

Componentes de las aeronaves no tripuladas.

- Las aeronaves pilotadas por control remoto (RPAS) son en la actualidad un campo tecnológico en expansión con multitud de aplicaciones civiles, comerciales y de defensa.
- Las dimensiones, configuraciones aerodinámicas, duración del vuelo, alcance y carga útil o de pago son muy diferentes en los RPAS actuales, variando entre los grandes RPAS, de peso superior a las 14 Toneladas y carga útil superior a los 1.300 Kg, hasta los pequeños RPAS capaces de ser transportados y lanzados a mano, o incluso los múltiples diseños de micro-RPAS de dimensiones muy reducidas.
- Dada la diversidad de los diseños y aplicaciones de los RPAS actuales, es complicado establecer una clasificación única. A continuación veremos diversas formas de clasificación, o taxonomías para los RPAS, en atención a diversos criterios.
- En la siguiente tabla se presenta la clasificación desarrollada por la Plataforma Aeroespacial Española (PAE) propone dividir los RPAS, teniendo en cuenta alcance, altitud, autonomía de vuelo (endurance) y peso máximo al despegue (MTOW) del RPAS.

Categoría de UAS	Alcance (km)	Altitud (m)	Autonomía (h)	MTOW (kg)
Estratosféricos	>2.000	20.000 - 30.000	48	<3.000
Elevada altitud y gran autonomía (HALE)	>2.000	20.000	48	15.000
Media altitud y gran autonomía (MALE)	>500	14.000	24-48	1.500
Baja altitud y gran autonomía (LALE)	>500	3.000	Aprox. 24	Aprox. 30
Baja altitud y amplia penetración (LADP)	>250	50-9.000	0,25-1	350
Medio alcance	70 a >500	8.000	6-18	1.250
Corto alcance	10-70	3.000	3-6	200
Mini	<10	<300	<2	<30
Micro	<10	<250		<1

Clasificación de las aeronaves no tripuladas (Fuente PAE).

HALE

Estratosférico

Medium Range

Long Range

Short Range

MALE

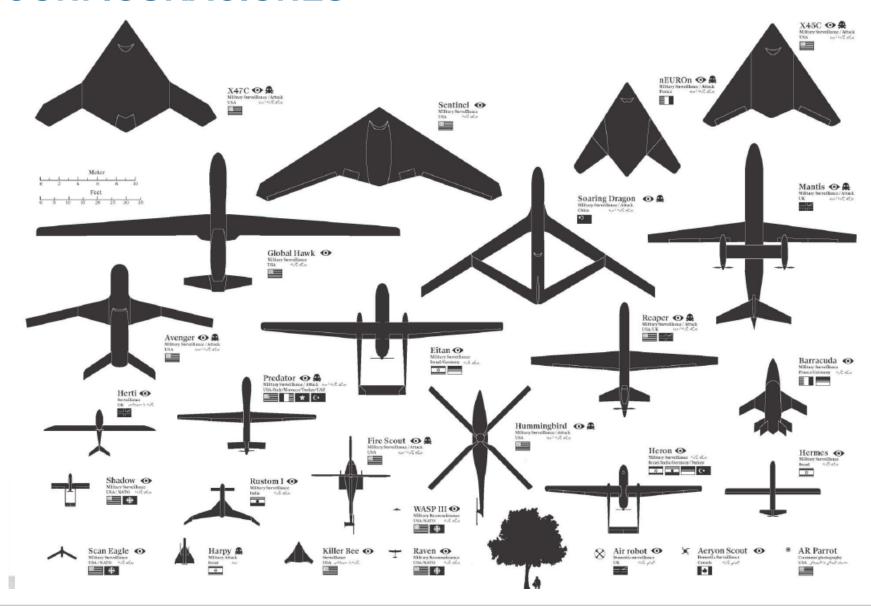
Micro Mini

Clasificación de las aeronaves no tripuladas (Fuente PAE).

y del Espacio

2. TAXONOMÍAS

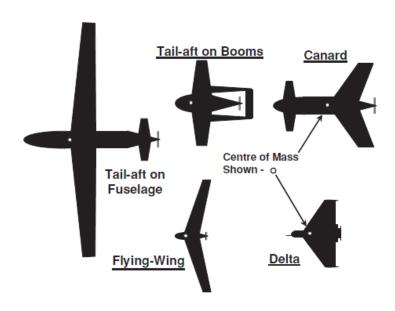
POLITÉCNICA


A continuación veremos dos clasificaciones militares muy utilizadas. Debajo está la tabla que corresponde a la clasificación de la USAF(Joint Concept of Operations for UAS, cap. 2, ver. 1.5):

Grupo de UAS	MTOW (lb)	Altitud normal de operación (ft)	Velocidad (kt)	UAS representativos
Grupo 1	0-20	< 1200 AGL	100	Raven (RQ-11)
Grupo 2	21-55	< 3500 AGL	. 050	Scan Eagle
Grupo 3	< 1320	< FL 180	< 250	Shadow (RQ-7B)
Grupo 4	> 1220	< FL 100	Cualquier	Predator (MQ-1A/B)
Grupo 5	> 1320	> FL 180	velocidad	Global Hawk

La siguiente es la clasificación OTAN (*JCGUAS "UAS Classification Guide"*, 2011):

Clase (MTOW)	Categoría	Empleo	Altitud de operación AGL	Radio de misión
	MICRO < 2kg	Táctico (sección)	Hasta 200 ft	5 km LOS
Clase I ≤ 150 kg	MINI 2-20 kg	Táctico (compañía)	Hasta 1.000 ft	25 km LOS
	LIGERO > 20 kg	Táctico (batallón)	Hasta 1.200 ft	50 km LOS
Clase II ≤ 600 kg	TÁCTICO	Táctico (brigada)	Hasta 10.000 ft	200 km LOS
	MALE	Operacional	Hasta 45.000 ft	Sin límite (BLOS)
Clase III > 600 kg	HALE	Estratégico	Hasta 65.000 ft	Sin límite (BLOS)
	UCAV	Estratégico	Hasta 65.000 ft	Sin límite (BLOS)


3. CONFIGURACIONES

Una vez que se han visto clasificaciones de tipo general, en atención a diferentes parámetros, lo adecuado es clasificar los RPAS en atención a su configuración. En tal caso, aparecen cuatro categorías:

RPAS de despegue/aterrizaje horizontal (HTOL; horizontal take-off and landing): tras muchos años de experiencia se pueden reducir a tres grandes tipos en función de la relación sustentación/peso, estabilidad y control. Estos tipos son:

- a) Estabilizador horizontal en cola.
- b) Canard.
- c) Sin cola.

RPAS de despegue/aterrizaje horizontal (HTOL; horizontal take-off and landing):

- Los RPAS tipo HTOL son siempre de ala fija.
- En cuanto al tipo de ala, existen diversas geometrías diferentes, entre las que cabe destacar:
 - Convencional: rectangular o trapezoidal; con flecha y sin flecha; alta, media o baja.
 - o Canard.
 - Ala volante.
 - Delta.
 - o Joined wing.
 - o Box-Wing.
 - BWB (Blended-wing-body).
- La configuración de la cola es, al igual que el ala, diversa:
 - Estabilizador horizontal bajo.
 - Cola en V.
 - Cola doble o en forma de "H".

RPAS de despegue/aterrizaje horizontal (HTOL; horizontal take-off and landing):

- En cuanto al tipo de motor se pueden encontrar:
 - Turbofán para altas velocidades
 - Turbohélice o motor de pistones con hélice acoplada para bajas velocidades.
- La posición del grupo motopropulsor también puede cambiar:
 - En la parte delantera de la aeronave (hélice tractora).
 - En la parte trasera (en caso de llevar hélice, ésta sería empujadora).
 - Bajo el ala.

Global Hawk

Predator 1A

Hunter IAI Malat

Boeing X-45 UCAV

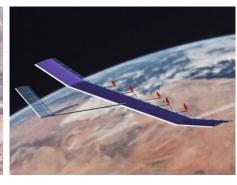
Lockheed Martin Desert Hawk

InSitu Scan Eagle

Raytheon Killer Bee

Ecotactical Sheperd Hawk

Sagem Sperwer B



Sagem Mini RPAS Merlin

BAE RPAS MALE Mantis

QuinetiQ Zephyr

Reimetal KZO

Thales Fulmar

nEUROn

RPAS de despegue/aterrizaje horizontal, tipo micro (Micro Air Vehicles, MAV):

- Se trata de aeronaves con una longitud máxima de unos 15 cm, según la clasificación de DARPA (*Defense Advanced Research Projects Agency*). Sin embargo ya es posible encontrar aeronaves de tamaño menor, clasificadas como "*pico air vehicles*" o "*nano air vehicles*".
- Las características principales de este segmento son:
 - 1. Régimen de vuelo: bajo nº de Reynolds ($Re = \times U/\frac{1}{2}$, inferior a 10⁵) que da lugar a baja eficiencia aerodinámica (3 a 7) comparada con aeronaves de mayor tamaño.
 - 2. Su baja masa (típicamente inferior a 0.5 kg), tamaño y potencia requieren el uso de sistemas de comunicaciones, aviónica y cargas de pago miniaturizadas, que tienen limitaciones en cuanto a sus actuaciones.
 - 3. Alcances inferiores a 15 km.
 - 4. Extremadamente sensibles a las ráfagas y turbulencia.
 - 5. Usos principales para obtención de imágenes. Especialmente útiles para vuelo en el interior de edificios así como en enjambres.

y del Espacio

3. CONFIGURACIONES: HTOL MAV

RPAS de despegue/aterrizaje horizontal, tipo micro (Micro Air Vehicles, MAV):

CAMPUS

POLITÉCNICA

DE EXCELENCIA INTERNACIONAL

AeroVironment Wasp III

Característica	Valor
Envergadura	0,72 m
Peso de despegue	0,43 kg
Máxima carga de pago	
Autonomía	0,75 horas
Altitud máxima	300 m AGL
Velocidad máxima	70 km/h
Método de lanzamiento	Catapulta a mano
Método de recogida	Belly landing
Propulsión	Baterías-eléctrica
Comunicaciones	LOS (line of sight)

RPAS de despegue/aterrizaje horizontal, tipo mini (Small Unmanned Aircraft Systems, SUAS):

- Se trata de aeronaves con un peso típico entre 1 y 25 kg, y a medio camino entre los MAV y los tácticos pequeños.
- Los de menor tamaño en esta categoría suelen tener autonomías de 0,5 a 2 horas y se lanzan a mano o con catapulta de gomas. Los de peso medio y alto, tienen autonomías de tipo LALE.
- Se trata del segmento más prolífico por el número y variedad de sistemas existentes dado que las barreras (precio y tecnología) son fáciles de abordar. Muchos son sistemas de aeromodelismo con autopilotos de bajo coste.
- Hay que tener en cuenta que hoy en día es fácil adquirir autopilotos basados en GPS de bajo peso, cámaras con gimbal de entre 0,5 a 2,5 kg, sistemas de comunicaciones LOS con alcances de vídeo entre 10 y 100 km por menos de 2,5 kg, etc.

RPAS de despegue/aterrizaje horizontal, tipo mini (Small Unmanned Aircraft

Systems, SUAS):

AeroVironment RQ-11B Raven

Característica	Valor
Envergadura	1,37 m
Peso de despegue	1,89 kg
Máxima carga de pago	160 g
Autonomía	1-1,5 h (con baterías recargables)
Altitud máxima	4270 m (de lanzamiento)
Velocidad máxima	93 km/h
Método de lanzamiento	A mano
Método de recogida	Deep stall belly landing
Propulsión	Baterías-eléctrica
Comunicaciones	LOS (line of sight)

3. CONFIGURACIONES: HTOL STUAS

RPAS de despegue/aterrizaje horizontal, tipo tácticos pequeños (Small Tactical Unmanned Aircraft Systems, STUAS):

- Se trata de aeronaves con un peso típico entre 25 y 100 kg y a medio camino entre los mini y los tácticos.
- Este concepto nació con el concurso de la US Navy y el cuerpo de Marines, ganado por el sistema de InSitu, Integrator (RQ-21A), desarrollado como una versión mayor del famoso mini RPAS InSitu Scan Eagle.
- Otras aeronaves, bastante conocidas, que se presentaron a dicho concurso fueron el Raytheon Killer Bee y el Dynamics Storm.
- El Integrator se lanza con catapulta neumática y se recoge con gancho. Tiene dos alojamientos para carga de pago (morro y bahía de carga central), y es fácilmente desmontable para su transporte. Tiene una autonomía de 24 horas.

3. CONFIGURACIONES: HTOL STUAS

RPAS de despegue/aterrizaje horizontal, tipo tácticos pequeños (Small Tactical

Unmanned Aircraft Systems, STUAS):

InSitu Integrator RQ-21A

Característica	Valor
Envergadura	4,88 m
Peso de despegue	60 kg
Máxima carga de pago	22,5 kg
Autonomía	24 horas
Altitud máxima	6000 m
Velocidad máxima	167 km/h
Método de lanzamiento	Catapulta neumática
Método de recogida	Skyhook TM
Propulsión	Alternativo 8 hp
Comunicaciones	LOS (line of sight)

RPAS de despegue/aterrizaje horizontal, tipo táctico (*Tactical Unmanned Aircraft Systems, TUAS*):

- Se trata de aeronaves con un peso máximo al despegue entre 25 y 600 kg, según el DoD.
- Esta categoría ha sido la que mayor número de desarrollos ha tenido desde los años 70, con un papel predominante por parte de Israel con un número importante de exitosos modelos.
- Estados Unidos se incorporo a este segmento en 1988 cuando adquirió el desarrollo israelita Pioneer, y en la actualidad opera (US Army y Marine Corps) el AAI Shadow (RQ-11B).
- Generalmente encontraremos sistemas con autonomías entre 5 a 12 horas, a altitudes inferiores a 20.000 ft (6.000 m).

RPAS de despegue/aterrizaje horizontal, tipo táctico (Tactical Unmanned Aircraft

Systems, TUAS):

AAI Shadow 200 RQ-7B

Característica	Valor
Envergadura	4,3 m
Peso de despegue	169 kg
Máxima carga de pago	25 kg
Autonomía	6-7 horas
Altitud máxima	5790 m
Velocidad máxima	228 km/h
Método de lanzamiento	Pista convencional o catapulta de railes
Método de recogida	Pista convencional con cables o red
Propulsión	Motor Wankel gasolina
Comunicaciones	LOS (line of sight)

RPAS de despegue/aterrizaje horizontal, tipo altitud media y gran autonomía (Medium-Altitude Long Endurance Unmanned Aircraft Systems, MALE):

- Se trata de aeronaves con un peso máximo al despegue entre 450 y 4500 kg, cargas de pago entre 100 y 500 kg y autonomías entre 12 y 40 horas.
- La altitud operacional varía entre 15.000 y 30.000 ft (4.500 a 9.000 m) para propulsión por motor alternativo y 30.000 a 50.000 ft (9.000 a 15.000 m) para turbohélices.
- En la actualidad los sistemas MALE son empleados para misiones ISR (Intelligence, surveillance and reconoissance), SIGINT (Signal intelligence) y misiones de ataque, aunque son capaces de desarrollar otras misiones.
- Estos sistemas, especialmente los grandes, requieren de hangares para recogerlos, equipos de soporte para montaje y desmontaje, y son transportados en contenedores. Emplean pistas asfaltadas.
- El número de sistemas existente es pequeño comparado con otras categorías debido a que los programas de desarrollo son largos y costosos, y hay más barreras de entrada a este mercado.
- Ejemplo: General Atomics MQ-1C Gray Eagle (versión mejorada del Predator A), ganador del concurso de la US Army contra el Hunter II de Northrop Grumman (versión mejorada del IAI Heron israelita).

RPAS de despegue/aterrizaje horizontal, tipo altitud media y gran autonomía (Medium-Altitude Long Endurance Unmanned Aircraft Systems, MALE):

General Atomics MQ-1C Gray Eagle

Característica	Valor
Envergadura	17 m
Peso de despegue	1440 kg
Máxima carga de pago	259 kg int / 225 kg ext
Autonomía	30 horas
Altitud máxima	8840 m
Velocidad máxima	250 km/h
Método de lanzamiento	Pista convencional
Método de recogida	Pista convencional
Propulsión	Motor alternativo 135 hp
Comunicaciones	LOS y SATCOM

RPAS de despegue/aterrizaje horizontal, tipo elevada altitud y gran autonomía (High-Altitude Long Endurance Unmanned Aircraft Systems, HALE):

- Se trata de aeronaves sofisticadas de elevadas prestaciones, que vuelan típicamente por encima de los 50.000-60.000 ft (15.000-18.000 m) autonomías por encima de las 24 horas. El MTOW suele estar por encima de los 2500 kg.
- En la actualidad el sistema Northrop Grumman RQ-4A Global Hawk es el único sistema HALE en el arsenal de los EE.UU.
- Este sistema se comenzó a desarrollar por Teledyne Ryan en 1994 con un contrato del DARPA. Posteriormente Teledyne Ryan fue comprada por Northrop Grumman, que continuó el proyecto, el cual realizó su primer vuelo en 1998.
- Rápidamente fue introducido en las campañas en Irak, generando el 55% de la identificación de objetivos sensibles para el ataque a las defensas iraquíes.
- En la actualidad se dispone de la versión RQ-4B, que tiene una envergadura de 40 m (anteriormente 35,4 m) y una mayor capacidad para carga de pago.

RPAS de despegue/aterrizaje horizontal, tipo elevada altitud y gran autonomía (High-Altitude Long Endurance Unmanned Aircraft Systems, HALE):

CAMPUS

POLITÉCNICA

DE EXCELENCIA INTERNACIONAL

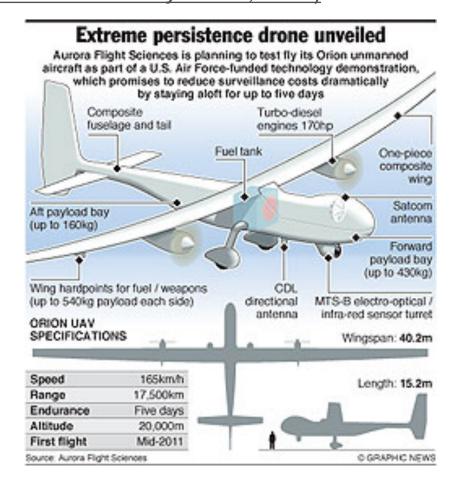
Northrop Grumman RQ-4B Global Hawk

Característica	Valor
Envergadura	40 m
Peso de despegue	14512 kg
Máxima carga de pago	1350 kg
Autonomía	33 horas
Altitud máxima	19812 m
Velocidad máxima	574 km/h a 18300 m
Método de lanzamiento	Pista convencional
Método de recogida	Pista convencional
Propulsión	Motor turborreactor
Comunicaciones	LOS y SATCOM

RPAS de despegue/aterrizaje horizontal, tipo ultra gran autonomía (*Ultra Long Endurance Unmanned Aircraft Systems, ULE*):

Se trata de una nueva categoría de sistemas con autonomías superiores a los 5 días, y altitudes del orden de 25.000 ft (7.600 m), o mayores, cubriendo las altitudes de los sistemas MALE y HALE.

- Las cargas de pago típicas son mayores de 250 kg.
- En la actualidad no hay sistemas ULE operativos aunque hay varios desarrollos entre los cuales están el Orion (Aurora Flight Sciences), el Phantom Eye (Boeing) y el Global Observer (AeroVironment). El Orion usa combustible pesado mientras que los otros dos usan hidrógeno.
- La principal diferencia entre plataformas reside en sus sistema de propulsión.
 Descartando los de propulsión solar (que se tratarán más adelante) hay sistemas basados en combustibles pesados o en hidrógeno. Los de combustibles pesados utilizan motores alternativos mientras que los de hidrogeno utilizan pilas de combustible para generar potencia.


RPAS de despegue/aterrizaje horizontal, tipo ultra gran autonomía (*Ultra Long Endurance Unmanned Aircraft Systems, ULE*):

Aurora Flight Sciences Orion

Característica	Valor
Envergadura	40 m
Peso de despegue	5050 kg
Máxima carga de pago	1125 kg
Autonomía	120 horas (5 días)
Altitud máxima	6096 m
Velocidad máxima	
Método de lanzamiento	Pista convencional
Método de recogida	Pista convencional
Propulsión	2 motores alternativos
Comunicaciones	LOS y SATCOM

RPAS de despegue/aterrizaje horizontal, tipo ultra gran autonomía (*Ultra Long Endurance Unmanned Aircraft Systems, ULE*):

Aurora Flight Sciences Orion

RPAS de despegue/aterrizaje horizontal, tipo combate (*Uninhabited Combat Aerial Vehicles, UCAV*):

- Según el DoD, un UAS de combate debe ser capaz de hacer frente a misiones de ataque tanto con armamento externo como interno, con elevada supervivencia y un MTOW superior a 600 kg.
- La principal diferencia entre un UCAV y un MALE armado es la mayor velocidad del primero debido a la planta propulsora tipo turboreactor y la mayor supervivencia (la supervivencia de un avión de combate se define como la capacidad de evitar o soportar un ambiente hostil creado por el hombre) a través de su baja detectabilidad.
- Ejemplos en los Estados Unidos incluyen el Boeing X-45A y X-45C (Phantom Ray), Northrop Grumman X-47A y X-47B, y General Atomics Avenger. En gran Bretaña está el BAE Taranis, en Suecia, el Sharc de SAAB y, finalmente, en Alemania el demostrador Barracuda, de EADS.

RPAS de despegue/aterrizaje horizontal, tipo combate (*Uninhabited Combat Aerial Vehicles, UCAV*):

Boeing Phantom Ray.

Característica	Valor
Envergadura	15,2 m
Peso de despegue	11125 kg
Máxima carga de pago	2040 kg
Alcance	2800 km
Altitud máxima	12192 m
Velocidad máxima	Mach 0,85
Método de lanzamiento	Pista convencional
Método de recogida	Pista convencional
Propulsión	1 aerorreactor GE
Comunicaciones	LOS, SATCOM desconocido

RPAS de despegue/aterrizaje horizontal, tipo opcionalmente pilotados (*Optionally Piloted Aircraft, OPA*):

- Desde los primeros tiempos de la aviación ha sido práctica frecuente la conversión de un avión tripulado en uno no tripulado.
- Aunque detrás de esta práctica se esconden razones de ahorro en costes y rapidez en la disponibilidad de la aeronave, en la actualidad hay una ventaja adicional que viene dada por el hecho de la certificación. El avión de partida ya está certificado y su adaptación a la nueva situación es más simple.
- Por supuesto estas conversiones no sólo se han llevado a cabo en aeronaves de ala fija (HTOL) sino también en aeronaves de ala giratoria y dirigibles.
- Las misiones cubren todos el espectro pero los casos mas usuales han sido los aviones blanco. Otros notables usos han sido para medir radiación, misiles crucero, despliegue de cargas e ISR.
- El proceso de conversión se suele beneficiar de la presencia de un piloto humano a bordo en los primeros vuelos.
- La modalidad OPA, como su nombre indica, permite que haya piloto humano a bordo, o no. Dos casos muy conocidos son el Gulfstream G550 (avión ejecutivo reconvertido a vigilancia marítima) y el Aurora Flight Sciences Centaur, que es la versión no tripulada del Diamond Aircraft DA-42.

RPAS de despegue/aterrizaje horizontal, tipo pilotados opcionalmente (Optionally

Piloted Aircraft, OPA):

Aurora Flight Sciences Centaur OPA

Característica	Valor
Envergadura	13,4 m
Peso de despegue	1900 kg
Máxima carga de pago	272 kg
Autonomía	24 horas
Altitud máxima	8382 m
Velocidad máxima	324 km/h
Método de lanzamiento	Pista convencional
Método de recogida	Pista convencional
Propulsión	2 motores alternativos
Comunicaciones	LOS y SATCOM

3. CONFIGURACIONES: HTOL OPA

RPAS de despegue/aterrizaje horizontal, tipo pilotados opcionalmente (Optionally Piloted Aircraft, OPA):

INDRA TARGUS, la evolución de un avión tripulado P2006T/MRI a OPV

El P2006T MRI fue desarrollado inicialmente por Indra como una solución de vigilancia aerotransportada de bajo coste basada en un avión ligero tripulado.

Esta nueva versión no tripulada de su avión de patrulla marítima está pensada para prestar servicio de vigilancia y reconocimiento en un radio comprendido entre 150-180 nm, con un coste de operación reducido comparado con las aeronaves de vigilancia marítima convencionales. La autonomía es 6 h, el doble de la actual versión tripulada, con un consumo de 32 litros gasolina conv./h.

La versión no tripulada incluye un radar de barrido electrónico Seaspray 5000E, equipo estándar del arma aérea de la Royal Navy, una cámara visible e infrarroja de alta resolución, un sistema AIS (sistema de identificación automática para buques), un radioenlace *line of sight* con un alcance eficaz de 180 millas náuticas, y un terminal Inmarsat.

3. CONFIGURACIONES: HTOL-BLANCOS AÉREOS

RPAS de despegue/aterrizaje horizontal, tipo blancos aéreos (*Targets*):

- Los blancos aéreos se clasifican, habitualmente en:
 - a) <u>Blancos de artillería de baja velocidad (de superficie)</u>: son los más numerosos y tuvieron su auge en la II Guerra Mundial, para el entrenamiento de la artillería anti-aérea tanto en el mar como en tierra.
 - b) <u>Blancos de alta velocidad</u>: Con la evolución de los aviones de ataque al suelo de hélice, a aeroreactores y misiles de crucero de alta velocidad, la velocidad de estos blancos también ha aumentado. Los aviones de combate también usan este tipo de blancos para simular sus amenazas y entrenar sus propias armas. Estos blancos tienen la misma envolvente de vuelo de los misiles a los que simulan.
 - c) Conversiones de aviones tripulados: pueden ser blancos muy adecuados dado que tienen un gran parecido con las aeronaves enemigas. Normalmente se aprovechan aviones obsoletos o que han excedido su vida útil. Los más adecuados son aviones de ataque o de combate. Algunos programas de este tipo en los EE.UU. han sido el QF-86, QF-100, QF-4 o el más reciente QF-16.

3. CONFIGURACIONES: HTOL OPA

RPAS de despegue/aterrizaje horizontal, tipo blancos aéreos (Targets):

CRi BQM-167

Característica	Valor
Envergadura	3,35 m
Peso máx. lanzamiento	922 kg
Máxima carga de pago	158 kg int, 225 kg ext
Autonomía	3 horas
Altitud máxima	15240 m
Velocidad máxima	Mach 0,91
Método de lanzamiento	Cohete
Método de recogida	Paracaídas
Propulsión	Turborreactor
Comunicaciones	LOS y SATCOM

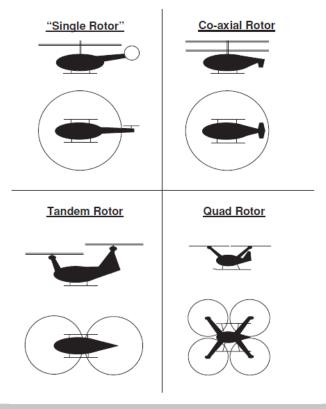
3. CONFIGURACIONES: HTOL-AVIONES SOLARES

RPAS de despegue/aterrizaje horizontal, tipo aviones solares (Solar-powered):

- Los aviones solares se pueden considerar una clase separada debido a las características especiales que les confiere su sistema de energía.
- El objetivo último de este tipo es lograr la autonomía de vuelo ilimitada.
- No obstante hay aún una serie de retos que vencer como son el vuelo en elevadas latitudes y en presencia de fuertes vientos.
- Estas aeronaves tienen una muy baja carga alar con el fin de reducir la potencia necesaria para el vuelo mientras que se incrementa la superficie alar en la que instalar las células fotovoltaicas.
- La estructura es ligera y fabricada en materiales compuestos avanzados.
- Los diseños más antiguos datan de la década de los 70, con los diseños Sunrise I y II de Astro Flight. Posteriormente AeroVironment construyó los modelos Pathfinder, Centurion y Helios entre los años 80 y 2000.
- En la actualidad destaca el modelo Zephyr de QuinetiQ, que es de menor tamaño y diseñado para trabajar como relé de comunicaciones, principalmente.
- El modelo más moderno es el programa Vulture de DARPA.

3. CONFIGURACIONES: HTOL-AVIONES SOLARES

RPAS de despegue/aterrizaje horizontal, tipo aviones solares (Solar-powered):


Quinetiq Zephyr

Boeing Vulture II (Solar Eagle)

RPAS de despegue/aterrizaje vertical (VTOL; vertical take-off and landing): las aeronaves de despegue/aterrizaje más comunes son las de ala rotatoria. De estas, la más utilizada es el helicóptero, que puede utilizar las siguientes variantes:

- a) Rotor principal único.
- b) Rotores coaxiales.
- c) Rotores en tándem.
- d) Tetrarrotores (multirrotores, en general).

Yamaha R-50

Nostromo Defensa Centinela

Indra Pelicano

EADS - VTOL Orka

Saab V-150 Skeldar

Schiebel Camcopter

EADS Scorpio-30

Black Hornet Nano

Sea Eagle

VMA-01

Northrop Grumman Firescout (MQ-8B)

Característica	Valor
Diámetro del rotor	8,38 m
Peso máx. despegue	1418 kg
Máxima carga de pago	225 kg
Autonomía	8 horas
Altitud máxima	6096 m
Velocidad máxima	232 km/h
Método de lanzamiento	Despegue vertical
Método de recogida	Aterrizaje vertical
Propulsión	1 Turboeje RR
Comunicaciones	LOS

RPAS con rotores coaxiales

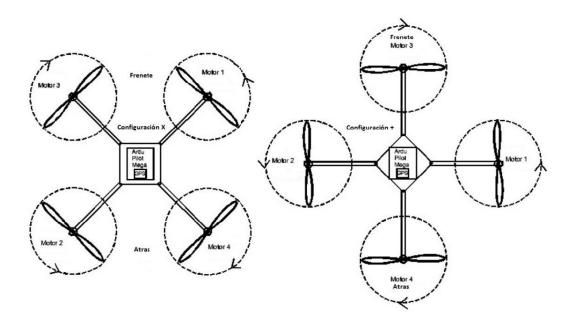
RPAS tetrarrotor

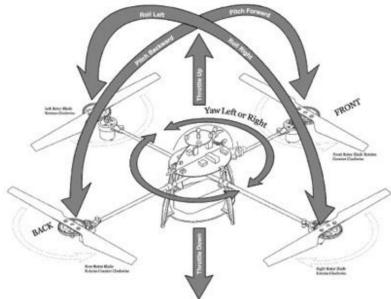
RPAS hexarrotor

RPAS octorrotor

RPAS de despegue/aterrizaje vertical multirrotores: los RPAS VTOL tipo multirrotor nacieron en el mundo del aeromodelismo como una simplificación de los helicópteros gracias al desarrollo de la electrónica de control y de los múltiples sensores que incorporan, si bien su historia se remonta al 1907 (L. Breguet).

Entre sus principales características tenemos:

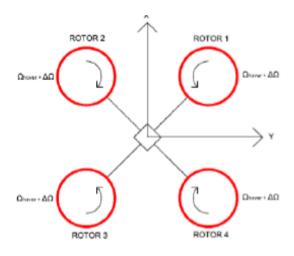

- A diferencia de los helicópteros, los rotores no necesitan tener partes móviles (articulaciones), dado que la generación de momentos para el control de la trayectoria y las maniobras se rigen por otros principios.
- Las hélices son de paso fijo.
- Fácil ajuste y mantenimiento del sistema motopropulsor.
- Hay configuraciones con 4, 6 y 8 rotores. La principal diferencia estriba en el control en caso de fallo de 1 o más motores.
- El principio de funcionamiento desde el punto de vista del control de la trayectoria y la actitud de la aeronave se basa en disponer de parejas de rotores que giran en sentido opuesto, con lo cual se compensa el par motor y elimina la necesidad de rotor antipar. Para maniobrar, se controla independientemente la potencia de cada motor, lo cual afecta a la tracción que desarrolla ese rotor. Además se dispone de un sistema de control automático que garantiza la estabilidad de la aeronave ante perturbaciones externas.


RPAS de despegue/aterrizaje vertical multirrotores:

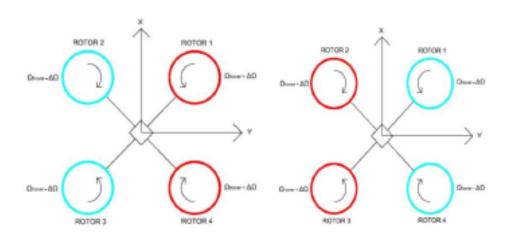
POLITÉCNICA POLITÉCNICA

En el caso de los tetrarrotores, hay dos configuraciones posibles, llamadas en X y en cruz (+):

Tetrarrotores en X y en +

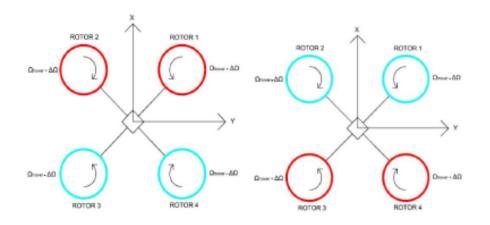


y del Espacio

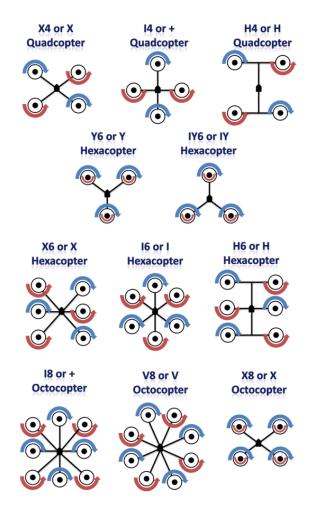

Diagrama de movimientos básico en un Tetrarrotor en configuración +

RPAS de despegue/aterrizaje vertical multirrotores:

Para un tetrarrotor en configuración X tenemos:



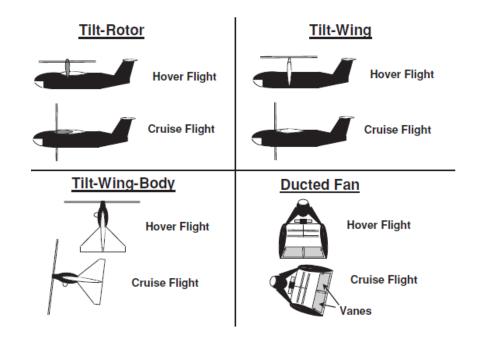
Control en balance


RPAS de despegue/aterrizaje vertical multirrotores:

Para un tetrarrotor en configuración X tenemos:

Control en cabeceo

Control en guiñada



Control de RPAS multirrotores

3. CONFIGURACIONES: HÍBRIDOS

RPAS híbridos: para desarrollar vuelo a punto fijo, los helicópteros han demostrado ser las aeronaves más eficientes, pero están limitadas a operar a velocidades del orden de 370 km/h, lo cual las hace inoperativas para misiones de largo alcance, donde dominan las aeronaves de ala fija. Sin embargo estas no son VTOL. Por tanto la idea es la combinación de ambos tipos. Así tenemos:

- a) Convertibles tipo tilt-rotor.
- b) Convertibles tipo *tilt-wing*.
- c) Convertibles tipo *tilt-body*.
- d) Rotores carenados.

3. CONFIGURACIONES: AEROSTATOS

RPAS tipo aerostato: es un tipo de aeronave (sustentada por fuerzas de flotación) que es susceptible de ser utilizada como RPAS, siendo la mayoría de sus aplicaciones en el formato dirigible. Sus principales características son:

- El gas más utilizado es el Helio (gas inerte, no renovable), seguido por el Hidrógeno (menos seguro pero menos denso).
- La principal ventaja frente a los aerodinos es que no hace falta un sistema de potencia para la generación de sustentación.
- La principal desventaja es que el gran volumen de gas, da lugar a grandes fuerzas de resistencia aerodinámica que debe ser compensada para el vuelo de avance o para el vuelo a punto fijo en presencia de fuertes vientos.
- La propulsión suele ser con motor alternativo, para los de baja altitud, y solar en los de elevada altitud.
- Clasificación:
 - Aerostatos cautivos: normalmente no son considerados UAS. No son propulsados ni guiados. Para misiones de larga duración sobre un área fija, son más baratos que un UAS de cobertura equivalente.
 - 2. Globos: tampoco se les suele considerar UAS dado que no son guiados en el sentido tradicional. Están a merced de los vientos con un control de la trayectoria limitado mediante la gestión del lastre.

3. CONFIGURACIONES: AEROSTATOS

- 3. Dirigibles de estructura flexible (blimps): el gas está contenido por un revestimiento presurizado que determina la geometría. Son aerostatos controlados y disponen de sistema de propulsión.
- 4. Dirigibles (estructura rígida): el concepto es similar al caso anterior pero con una estructura rígida. Casi no se usan como UAS.
- 5. Dirigibles híbridos: generan sustentación mediante fuerzas de flotación y fuerzas aerodinámicas. Son un híbrido entre aerostatos y aerodinos. De esta forma el volumen de gas puede ser menor y las alas permiten el despegue y el aterrizaje de forma convencional (HTOL).

Sky Sentinel (18 horas de autonomía, altitud de 10.000 ft, 30 m de longitud y carga de pago de 136 kg)

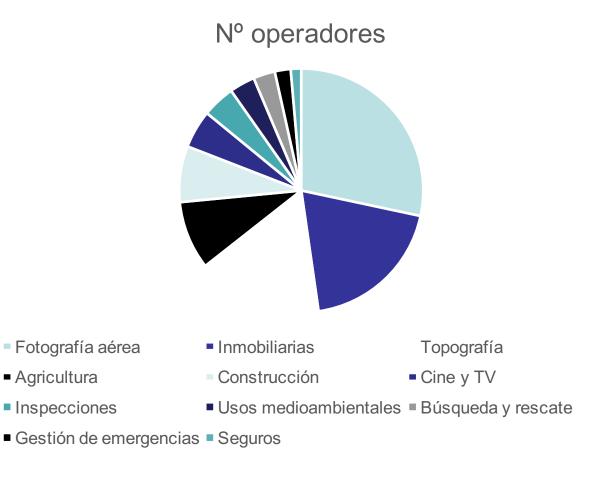
3. CONFIGURACIONES

A continuación se puede ver una tabla comparativa de las características, esencialmente en términos de actuaciones, de los diferentes tipos considerados:

Característica	Aviones	Helicópteros	Mutlirrotores	Dirigibles
Capacidad de vuelo a punto fijo	NO	***	***	***
Velocidad característica de avance	***	***	**	*
Maniobrabilidad	**	***	***	*
Autonomía	***	**	*	***
Comportamiento ante ráfagas	***	**	**	*
Estabilidad	***	*	**	***
Vuelo vertical	*	***	***	*
Capacidad de carga	***	***	**	*
Vuelo en interiores	*	**	***	***
Techo	***	**	*	***

4. ALGUNAS CIFRAS DEL MERCADO: TEAL GROUP

- Los sistemas aéreos no tripulados continúan siendo el sector de crecimiento más dinámico dentro de la industria aeroespacial en esta década.
- El estudio de mercado 2015 de Teal Group estima que la producción de UAV se va a disparar de las cifras actuales, 4.000 millones \$, a los 14.000 millones \$, totalizando los 93.000 millones \$ en los próximos 10 años. Los UAV militares añadirán otros 30.000 millones \$ en esta década.
- Mercado civil: Teal Group indica que el mercado civil no hace más que crecer. Se calcula que el mercado de los UAV está repartido entre un 72% para el campo militar, un 23% de consumo y un 5% civil. De estas tres partes, el mercado civil es el que va a crecer más rápido conforme el espacio aéreo se vaya abriendo a estas operaciones.
- Los EE.UU. aportarán un 64% de la I+D+i en sistemas militares UAV de todo el mundo en esta década y cerca del 38% en adquisiciones militares.
- <u>Cargas de Pago</u>: el actual gasto de 3.100 millones \$ en 2015 crecerá hasta los 6.400 millones \$ en 2024. Los sistemas EO/IR siguen siendo los más empleados.
- <u>Compañías</u>: se detecta el interés por los UAV no sólo dentro de empresas aeroespaciales sino también en otras empresas tecnológicas como Google, Facebook o Amazon, al detectarse oportunidades en el mercado.


4. ALGUNAS CIFRAS DEL MERCADO: AUVSI

Centrándonos ahora exclusivamente en el mercado de aplicaciones civiles, a continuación se presentan algunos datos procedentes del estudio de AUVSI (Association for Unmanned Vehicle Systems International) llevado a cabo en septiembre de 2015 con los datos procedentes de las 1000 primeras exenciones concedidas en los EE.UU para operaciones civiles:

- La FAA de los EE.UU. aprobó los 6 primeros operadores (exención para operaciones comerciales según la Sección 333 del Acta de Reforma y Modernización de la FAA de 2012) en septiembre de 2014, todos ellos para filmación de películas y producción de TV. Un año después ya había 2650 solicitudes de las cuales se habían aprobado 1407. Aproximadamente el ritmo de aprobaciones es de 50 por semana.
- Se han aprobado operadores de 49 estados.
- California es el estado con más aprobaciones, 114, seguido de Florida, con 97, y Texas, con 82.
- Los fabricantes de California son también los que más plataformas han fabricado, 140, seguidos de Florida, con 19.

4. ALGUNAS CIFRAS DEL MERCADO: AUVSI

 Las operaciones aprobadas se corresponden con 25 diferentes aplicaciones, encabezadas por las de fotografía aérea que ocupan 512 de las primeras 1000 exenciones. El resto han sido:

4. ALGUNAS CIFRAS DEL MERCADO: AUVSI

- Al menos el 84% de los operadores aprobados eran PyMES.
- El coste estimado de todas las plataformas aéreas utilizadas es de 10,7 millones de \$, de las cuales:
 - a) 1018 de las 1480 plataformas fueron fabricadas por DJI (del orden de 2 millones de \$).
 - b) Las ventas de plataformas de los EE.UU. ascendió a 2,5 millones \$.
 - c) Canadá vendió 35 plataformas por 2,5 millones \$.

El pasado mes de mayo de 2016 Price Waterhouse & Coopers ha publicado el estudio "Clarity from above. PwC global report on the comercial applications of drone technology", del que se destacan los siguientes aspectos:

 Para medir el mercado actual se han obtenido los costes de trabajo y servicios con alto potencial para ser sustituidos por RPAS en un futuro muy próximo. Los resultados son los siguientes:

Figure 1. Value of drone powered solutions addressable industries

— global view (\$ bn)¹

– global view (ψ bii		
	2015	
Infrastructure	45.2	
Transport	13.0	
Insurance	6.8	
Media & Ent.	8.8	
Telecommunication	6.3	
Agriculture	32.4	
Security	10.5	
Mining	4.3	
Total	127.3	

¹ Values presented in this table correspond with the current (2015) value of businesses and labour in each industry that may be replaced by drone powered solutions, according to PwC research.

- Los sectores identificados anteriormente, y las aplicaciones concretas identificadas son los siguientes:
 - 1. Infraestructuras:
 - gestión de inversiones (durante todo el proceso de la obra; antes, durante y después).
 - Mantenimiento.
 - Inventario.

2. Transporte:

- Paquetería general.
- Suministro de repuestos.
- Logística médica.
- Entrega de alimentos.

3. Seguros:

- Gestión de riesgos (especialmente medioambientales).
- Evaluación de riesgos.
- Gestión de siniestros y prevención contra el fraude.

- Los sectores identificados anteriormente, y las aplicaciones concretas identificadas son los siguientes:
 - 4. Medios de comunicación y entretenimiento:
 - Fotografía aérea y filmación.
 - Publicidad.
 - Espectáculos y efectos especiales.
 - 5. Telecomunicaciones:
 - Mantenimiento de infraestructuras.
 - Futuras aplicaciones: optimización de las comunicaciones y distribución de señal.
 - 6. Agricultura:
 - Supervisión de cultivos.
 - Evaluación de la salud de los cultivos.
 - 7. Seguridad:
 - Monitorización de contornos y áreas.
 - Reacción proactiva (ej. Seguimiento de multitudes, evaluación de heridos en muchedumbres...)

- Los sectores identificados anteriormente, y las aplicaciones concretas identificadas son los siguientes:
 - 8. Minería:
 - Planificación.
 - Exploración.
 - Efectos medioambientales.
 - Monitorización e informes.
- En cuanto a los fabricantes de plataformas, en 2015 la cifra de negocio de fabricación de aeronaves se ha valorado en 1.400 millones \$, basándose en los beneficios de los grandes fabricantes.
- En la industria recreacional y comercial Parrot, DJI, 3D Robotics y Aeryon son los suministradores de mayor tamaño. No obstante sus inmediatos competidores son Ehang, Walkera, Squadrone System, Xiro y Yuneec en la alta gama, y Cheerson, Syma, Hubsan, Blade Hobbico y JJRC en la gama baja.
- Fabricantes de UAV militares como AeroVironment, BAE Systems, Elbit, IAI y Lockheed Martin también están empezando a acceder al mercado comercial produciendo plataformas para usos comerciales.

Los fabricantes del RPAS comerciales más populares en 2015 son los siguientes (77% de cuota de mercado para aeronaves de ala rotatoria):

1. <u>DJI</u>:

- Se fundó en Shenzhen, China, en 2006 y desde el principio se ha centrado en plataformas de alta gama listas para volar.
- En los últimos 3 años su tasa de crecimiento anual compuesto ha sido del 97,4%, impulsada por la serie Phantom y, especialmente, por el modelo Phantom 3, que es el modelo más popular en la actualidad.
- Sus modelos se centran especialmente en la fotografía aérea y aplicaciones derivadas.
- Recientemente ha sacado al mercado el DJI Agras MG-1, que es un octorrotor específicamente diseñado para aplicaciones agrícolas.

AERONAVE

Peso (Bateria y Hélices Incluidas) 1280 g

Tamaño Diagonal (Hélices Excluidas) 350 mm

Velocidad Max. en Ascenso 5 m/s

Velocidad Max. en Descenso 3 m/s

Vertical: +/- 0.1 m (si el Posicionamiento Visual està

activado) o +/- 0.5 m
• Horizontal: +/- 1.5 m

Velocidad Max. 16 m/s (modo ATTI, sin viento)

Altura Max. de Servicio sobre el Nivel del

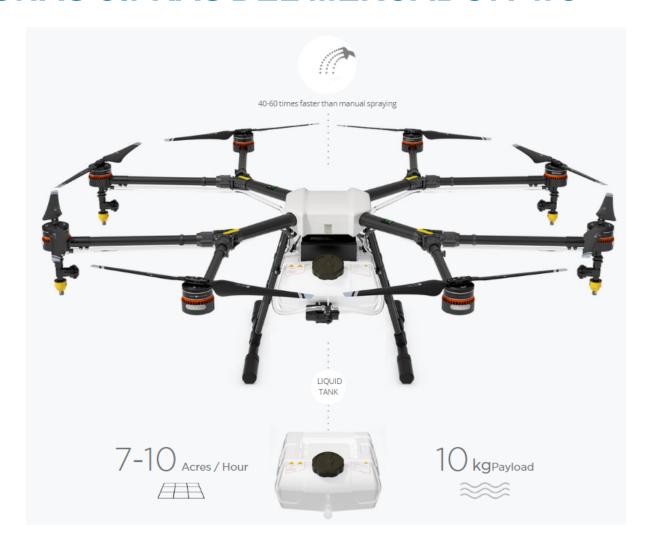
Mar

6000 m

(Límite de altura por defecto: 120 m sobre el punto de

despegue)

Temperatura de Funcionamiento de 0°C a 40°C


Modo GPS GPS/GLONASS

Max. Duración de Vuelo Aproximadamente 23 minutos

DJI Phantom 3 Professional

DJI AGRAS MG-1

Los fabricantes del RPAS comerciales más populares en 2015 son los siguientes (77% de cuota de mercado para aeronaves de ala rotatoria):

2. 3D Robotics:

- La sede central está en Berkeley (California), aunque la producción se realiza en Tijuana (México) y la ingeniería en San Diego.
- Su principal modelo es el Iris Plus y el más moderno (finales 2015) es el Solo.
- Sus productos se utilizan, principalmente, para agricultura, infraestructuras, vigilancia y cartografía.
- La empresa ha recibido financiación de capital por valor de 99 millones \$
 de varios inversores para el desarrollo de plataformas comerciales y de
 consumo.

3D Robotics Iris Plus

Performance

Maximum payload: 400 g (.8 lb) payload capacity Flight time: 16-22 minutes depending on payload

Height: 100 mm

Motor-to-motor dimension: 550 mm Weight with battery: 1282 g

Electronics

Autopilot hardware: Next generation 32-bit Pixhawk with Cortex M4 processor

GPS: uBlox GPS with integrated magnetometer

Controller: Any PPM compatible RC unit, Preconfigured FlySky FS-TH9x RC

Telemetry: 3DR Radio 915mHz or 433mHz

Components

Propellers: (2) 9.5 x 4.5 tiger motor multi-rotor self-tightening counterclockwise rotation, (2) 9.5 x 4.5 tiger motor multi-rotor self-tightening

clockwise rotation Motors: 950 kV

GPS: uBlox GPS with integrated magnetometer

Mounts: Integrated GoPro camera mount with vibration dampener Optional: Tarot brushless gimbal with custom IRIS+ mounting kit

Battery: 5100 mAh 3S

3D Robotics Solo

Los fabricantes del RPAS comerciales más populares en 2015 son los siguientes (77% de cuota de mercado para aeronaves de ala rotatoria):

3. SenseFly/Parrot:

- SenseFly es una spin-off del Instituto Federal de Tecnología de Suiza (EPFL) fundada en 2009.
- Sus productos se utilizan, principalmente, para agricultura, infraestructuras, vigilancia y sistemas de información geográfica.
- Su producto más popular es el eBee, con sus versiones eBee AG para agricultura y eBee RTK para minería.
- Desde 2012, el 62% de la compañía pertenece a Parrot, el fabricante francés de RPAS recreacionales y dispositivos inalámbricos.
- Los productos más extendidos de Parrot son la serie AR.drone, y su sucesor, Bebop Drone que es una plataforma de tamaño medio que incorpora un sistema FPV (First-Person-View) controlado por un Smartphone o tableta.
- En 2015 la venta de RPAS supuso el 56% de las ventas totales de Parrot, alcanzando la cifra de 199,15 millones \$.

Parrot AR.Drone 2.0 Elite

GRABACIÓN DE VÍDEO DE HD

Consigue la transmisión de video en vivo en alta definición en tu Smartphone o Tablet durante el vuelo. Observa una imagen limpia y nítida como si estuvieras en el asiento del piloto.

- Cámara HD. 720 p 30 fps
- Objetivo gran angular: 92° diagonal
- Almacenamiento de vídeo instantáneo con Wi-Fi directamente en su dispositivo remoto o en una llave USB
- Perfil base de codificación H264
- Transmisión de baja latencia
- Captura de fotos JPEG

ESTRUCTURA ROBUSTA

Intentar los trucos más audaces nunca supondrá un reto para este diseño de última generación, fabricado para larga duración.

- Espuma para aislar el centro inercial de las vibraciones del motor
- Cascos de Polipropileno Expandido (EPP)
- Tubos de fibra de carbono: peso total 380 g. con casco exterior, 420 g. con casco interior
- Fibra de alta calidad (30%) cargada con piezas plásticas de nylon
- Nanorevestimiento repelente a los líquidos en sensores de ultrasonidos
- Totalmente reparable: todas las piezas y las instrucciones de reparación están disponibles en el sitio Web de Parrot

MOTORES

Volar alto. Volar rápido. Lejos del suelo.

- Batería LiPo recargable de 1.000 mA/H y 3 celdas
- Resistencia aerodinámica específica de alta propulsión para ofrecer una excelente maniobralidad
- CPU AVR DE 8 MIPS por controlador de motor
- 4 motores "inrunner" sin escobillas, 14,5 vatios y 28.500 rpm durante el desplazamiento
- Cojinetes de bronce de lubricación automática
- Ejes de transmisión de acero templado
- Engranajes de Nylatron de bajo ruido para reductor de propulsión 8.625
- Cojinete de microbola
- Imanes de tierra excepcionales
- Parada de emergencia controlada por software

Parrot Bebop Drone

Especificaciones técnicas

- Cámara de fotos de 14 megapíxeles con un objetivo "fisheye"
- Vídeo Full HD 108op estabilizado y para compartir instantáneamente
- Avanzado sistema de estabilización de 3 ejes
- Video streaming en vivo en tu smartphone o tableta
- Control de visión de 180° en tu smartphone o tableta
- Pensado para ser seguro: las hélices se detienen en caso de impacto
- GPS integrado, para volver automáticamente al punto de partida, y control de vuelo a gran altitud
- Procesador dual core con GPU quad core
- · Almacenamiento memoria flash de 8 GB
- Conectado a la nube de Parrot para hacer el seguimiento de todos tus vuelos y compartir tus fotos, vídeos y datos de navegación.
- Fácil de pilotar, gracias a la aplicación gratuita dedicada: Freeflight 3
- Peso: 380 g sin carcasa 400 g con carcasa

Conectividad

- Wi-Fi 802.11a/b/g/n/ac
- Antenas Wi-Fi: bibanda MIMO con 2 juegos de antenas dobles dipolos conectadas a las bandas 2,4 y 5 GHz
- Potencia de emisión: hasta 21 dBm
- · Alcance de la señal: hasta 300 metros

Estructura

- 4 motores Brushless Outrunner.
- Estructura ABS reforzada con fibra de vidrio (15%).
- Carcasa de EPP de alta resistencia: se engancha y desengancha de forma muy simple, para adaptarse al vuelo en interior o exterior. Protege las hélices de los golpes eventuales. Puede quitarse para disminuir la resistencia al viento del aparato

Video

- Cámara con objetivo Fisheye 180° 1/2,3":
 6 elementos ópticos y sensor de 14 megapíxeles
- Estabilización vídeo: digital 3 ejes
- Resolución de vídeo: 1920x1080p (30 fps)
- Resolución foto: 3800 x 3188
- Codificación de vídeo: H264
- Formato de foto: RAW, DNG
- Memoria interna: memoria flash de 8 Go
- Memoria ampliable: micro USB

Contenido de la caja

- 1 Bebop Drone
- 2 baterías
- 1 cargador con adaptadores US/JP, UK y ANZ
- 1 cable micro USB
- 2 carcasas de protección interior
- 4 hélices adicionales
- · herramienta de montaje de las hélices
- Guía de inicio rápido

Los fabricantes del RPAS comerciales más populares en 2015 son los siguientes (77% de cuota de mercado para aeronaves de ala rotatoria):

4. Aeryon:

- Aeryon es una empresa canadiense con base en Waterloo, Ontario, y creada en 2007.
- La compañía desarrolla, diseña y fabrica micro UAVs para uso comercial, gubernamental y militar.
- Ha conseguido una financiación de una empresa de capital, Summit Partners, de 60 millones \$.
- Su principal producto es el Aeryon SkyRanger, cuyas aplicaciones cubren las áreas de vigilancia, cartografía y monitorización de la seguridad pública.
- En la actualidad toma parte como socio del Microsoft Advanced Patrol Platform (MAPP) vehicle, integrando su UAV SkyRanger dentro del sistema de visión del vehículo de superficie MAPP, encaminado a ser una herramienta de apoyo a cuerpos y fuerzas de seguridad pública.

Aeryon SkyRanger

TECHNICAL SPECIFICATIONS:

ENDURANCE:

• Up to 50-minute flight time (with payload)

WIND TOLERANCE:

- 40 mph (65 kph) sustained
- 55 mph (90 kph) gusts

ENVIRONMENTAL TEMPERATURE RANGE:

• -22°F to 122°F (-30°C to 50°C)

BEYOND LINE-OF-SIGHT RANGE:

- 1.9 mi (3 km) integrated capability
- Extensible beyond 3.1 mi (5 km)

ALTITUDE:

1500 ft. (450 m) AGL, 15000 ft. (4500 m) MSL

LAUNCH & RECOVERY METHOD:

Vertical Take-Off and Landing (VTOL)

DIMENSIONS:

- Deployed: 40 in. (102 cm) diameter,
 9.3 in. (24 cm) height
- Folded: 20 in. (50 cm) length, 10 in. (25 cm) width

WEIGHT (WITHOUT PAYLOAD):

5.3 lbs (2.4 kg)

ADDITIONAL PAYLOADS:

- 3-axis stabilized high resolution EO camera
- Custom payload development

NAVIGATION LEDS:

• Red/Green and Red/NIR

RADIO FREQUENCIES:

900 mhz, 2.4 GHz, custom

CONTROL AND DATA LINK:

Low-latency all-digital network

SECURITY:

 Secure network pairing, AES 256 bit encryption